L’intelligenza artificiale applicata in organizzazioni poco strutturate: l’illusione dell’efficienza

Una riflessione che mi accompagna spesso in questo periodo — e che viene sollecitata anche dalle organizzazioni che seguo come consulente — riguarda l’utilizzo dell’intelligenza artificiale in combinazione con il metodo Kanban.

Qualche giorno fa, durante una presentazione introduttiva sul metodo Kanban a un gruppo di potenziali interessati, mi sono trovato di fronte a una persona che, con grande entusiasmo, raccontava di aver ottenuto risultati straordinari di efficientamento nella propria organizzazione grazie all’uso dell’AI.

Questo episodio mi ha riportato alla mente un’interessante analisi contenuta in un recente articolo di Klaus Leopold, che potete leggere qui. Leopold si concentra sul suo modello dei Flight Levels, ma osservazioni analoghe possono essere fatte anche alla luce del Kanban Maturity Model (KMM).

Sta emergendo infatti un paradosso notevole: l’intelligenza artificiale (AI) rende le persone sempre più efficienti nei propri compiti, ma allo stesso tempo sembra spingere le organizzazioni indietro, fino a ML0 (Inconsapevole – Oblivious).

La regressione a ML0: l’ottimizzazione individuale

Storicamente, le organizzazioni di servizi professionali erano fortemente orientate alla performance individuale. Con lo sviluppo del pensiero organizzativo si è compiuto un passo avanti significativo, spostando progressivamente l’attenzione dall’individuo al team e, successivamente, al sistema nel suo insieme.

Oggi, tuttavia, l’uso prevalente dell’intelligenza artificiale sembra riportarci a un livello di focalizzazione più elementare: l’ottimizzazione delle prestazioni individuali, attraverso strumenti come assistenti di scrittura o applicazioni per la generazione e il riassunto di testi.

Questo tipo di applicazione dell’AI si allinea perfettamente alle caratteristiche di organizzazioni a ML0. A questo livello:

  1. Focus su sé stessi e raggiungimento dei risultati: l’organizzazione si presenta come un insieme di individui poco coesi, ciascuno concentrato sui propri obiettivi. Il valore culturale dominante è l’Achievement, ovvero il raggiungimento dei risultati personali. L’intelligenza artificiale finisce per rafforzare questo orientamento, offrendo a ciascuno la possibilità di autocelebrarsi quotidianamente con pensieri del tipo: “Guarda quanto sono produttivo”.
  2. Pratiche individualistiche: le pratiche organizzative si focalizzano principalmente sul completamento dei singoli compiti (“getting things done”). Quando presente, l’uso delle Kanban board avviene a livello individuale (VZ 0.1). L’intelligenza artificiale non modifica sostanzialmente questo approccio: si limita a rendere più rapidi i processi — scrivere più velocemente, codificare più velocemente, fare tutto più velocemente — aumentando così l’efficienza dell’individuo, ma non quella del sistema.
  3. Qualità dipendente dall’eroe di turno: la qualità e la coerenza del lavoro dipendono interamente dalle competenze, dall’esperienza e dal giudizio dei singoli. Ne risulta un’organizzazione estremamente fragile, in cui ogni cambiamento di personale può compromettere significativamente la stabilità operativa.

L’illusione di produttività: sub-ottimizzazione complessiva

La promessa di ridurre il lavoro “da due ore a 20 minuti” o ottenere un “risparmio di tempo del 75% nelle presentazioni” crea una potente illusione di produttività. In realtà, questo progresso è solo apparente.

Quando l’intelligenza artificiale viene impiegata per velocizzare singole attività in modo isolato, senza un coordinamento sistemico, si producono effetti paradossali:

  • L’AI produce riassunti perfetti delle riunioni, ma nessuno legge il riassunto.
  • L’AI crea automaticamente la richiesta di ferie, ma l’approvazione resta bloccata per tre settimane sulla scrivania del capo.
  • L’AI crea 25 versioni di uno slogan e il team marketing finisce per impiegare il doppio del tempo per sceglierne uno.

Visto da una prospettiva di pensiero sistemico (system thinking), tutto questo si traduce semplicemente in tempo sprecato più velocemente. Ottimizzare un singolo passaggio — come premere il tasto “A” due volte più rapidamente — non rende più veloce la scrittura se il sistema complessivo resta invariato.

Allo stesso modo, se tutti i membri di un’organizzazione diventano “supereroi dell’AI” e svolgono le proprie mansioni individuali in meno tempo, il risultato non è una consegna più rapida di valore al cliente. Al contrario: il lavoro tende ad accumularsi nel collo di bottiglia successivo.

Un aumento della velocità in ingresso nel sistema non accelera la velocità in uscita: genera invece più lavoro in corso (Work in Progress – WIP), più rilavorazioni e più caos.
È il risultato tipico della ottimizzazione locale, che porta inevitabilmente a una sub-ottimizzazione del sistema complessivo.

La via d’uscita da ML0: il pensiero sistemico

Per sfuggire alle tipiche logiche da organizzazione poco strutturata, è necessario superare la mentalità individualistica e adottare un autentico pensiero sistemico.

  • Passaggio a ML1 (Team-Focused): a questo livello si inizia a riconoscere l’identità dei team, a sviluppare la collaborazione e a incoraggiare l’iniziativa collettiva. L’introduzione di limiti al Work in Progress (WIP) per persona (LW 0.1) o per team (LW 1.1) contribuisce a ridurre il muri (sovraccarico), creando le basi per un flusso di lavoro più sostenibile.
  • Passaggio a ML2 (Customer-Driven): l’attenzione si sposta progressivamente sul cliente. La cultura organizzativa evolve dall’esecuzione dei compiti alla gestione del flusso. Si inizia a comprendere il lavoro come un servizio erogato al cliente, piuttosto che come una somma di attività interne. In questa fase, la mancanza di pensiero sistemico rappresenta il principale ostacolo al raggiungimento di ML2.
  • Passaggio a ML3 (Fit-for-Purpose): l’organizzazione raggiunge un grado più elevato di unità e allineamento, sviluppando un senso di scopo condiviso. Il servizio viene erogato in modo coerente con le aspettative del cliente e il sistema diventa realmente fit-for-purpose (idoneo allo scopo). In questo stadio, l’ottimizzazione non riguarda più il singolo o il team, ma l’intero flusso di valore end-to-end.

L’ottimizzazione che avviene nel passaggio da ML0 a ML1 rappresenta un progresso significativo per i membri dell’organizzazione, ma il funzionamento complessivo del servizio resta comunque unfit-for-purpose (non idoneo allo scopo) dal punto di vista del cliente. Per creare reale valore, è necessario evolvere verso ML3.

Il vero potenziale dell’AI per la crescita di maturità delle organizzazioni

Il vero valore e l’impatto organizzativo emergono solo quando l’intelligenza artificiale viene applicata ai livelli di gestione del flusso e della strategia (ML2, ML3 e ML4). Le organizzazioni hanno bisogno di approcci che favoriscano l’evoluzione dell’intero sistema, non solo l’efficienza delle singole parti.

Nella tabella seguente sono riportate alcune indicazioni e possibili applicazioni dell’AI, suddivise per livello di maturità:

Livello KMMObiettivo OrganizzativoImpiego dell’AI
ML2 (Customer-Driven)Coordinamento e flusso: far fluire il lavoro tra team.L’AI analizza le capacità interfunzionali e identifica le dipendenze e i conflitti tra gli obiettivi dei diversi dipartimenti.
ML3 (Fit-for-Purpose)Allineamento e scopo: soddisfare in modo sostenibile le aspettative del cliente.L’AI può segnalare quando le azioni intraprese non sono allineate con la strategia o con lo scopo del servizio.
ML4 (Risk-Hedged)Rischio e sostenibilità economica: robustezza e bilanciamento degli interessi degli stakeholder.L’AI è in grado di simulare scenari — ad esempio l’impatto di spostare il 30% del budget — analizzare il portfolio in termini di valore generato e fornire valutazioni sui possibili rischi. ML4 richiede anche una solida alfabetizzazione matematica, fondamentale per l’uso efficace di modelli predittivi e simulazioni Monte Carlo.

Mentre l’ottimizzazione individuale resa possibile dall’AI può semplificare le attività quotidiane, il suo impatto a livello sistemico resta nullo quando il lavoro deve attraversare più unità organizzative, richiedendo coordinamento e approvazioni.

Per raggiungere livelli evoluti di agilità e resilienza (ML3, ML4 e oltre), è necessario spostare l’attenzione dall’AI come strumento per creare “supereroi individuali” all’AI come leva per costruire sistemi robusti, integrati e allineati.
Questi sistemi, tuttavia, iniziano a prendere forma solo a partire da ML2 e ML3.

Fino ad allora, l’ottimizzazione tipica di ML0 — per quanto utile e pratica — non è in grado di produrre effetti significativi sull’efficacia complessiva dell’organizzazione.